
Robustness of plant quantitative disease resistance is
provided by a decentralized immune network
Florent Delplacea,1, Carine Huard-Chauveaua,1, Ullrich Dubiellaa,b, Mehdi Khafifa, Eva Alvareza, Gautier Langina,
Fabrice Rouxa, Rémi Peyrauda,c

, and Dominique Robya,2

aLaboratoire des Interactions Plantes-Microorganismes, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, CNRS,
Université de Toulouse, 31326 Castanet-Tolosan, France; bKWS SAAT SE & Co, 37574 Einbeck, Germany; and ciMean, 31520 Toulouse, France

Edited by Paul Schulze-Lefert, Max Planck Institute for Plant Breeding Research, Cologne, Germany, and approved June 15, 2020 (received for review January
3, 2020)

Quantitative disease resistance (QDR) represents the predominant
form of resistance in natural populations and crops. Surprisingly,
very limited information exists on the biomolecular network of the
signaling machineries underlying this form of plant immunity. This
lack of information may result from its complex and quantitative
nature. Here, we used an integrative approach including geno-
mics, network reconstruction, and mutational analysis to identify
and validate molecular networks that control QDR in Arabidopsis
thaliana in response to the bacterial pathogen Xanthomonas cam-
pestris. To tackle this challenge, we first performed a transcrip-
tomic analysis focused on the early stages of infection and using
transgenic lines deregulated for the expression of RKS1, a gene
underlying a QTL conferring quantitative and broad-spectrum re-
sistance to X. campestris. RKS1-dependent gene expression was
shown to involve multiple cellular activities (signaling, transport,
and metabolism processes), mainly distinct from effector-triggered
immunity (ETI) and pathogen-associated molecular pattern
(PAMP)-triggered immunity (PTI) responses already characterized
in A. thaliana. Protein–protein interaction network reconstitution then
revealed a highly interconnected and distributed RKS1-dependent
network, organized in five genemodules. Finally, knockout mutants
for 41 genes belonging to the different functional modules of the
network revealed that 76% of the genes and all gene modules par-
ticipate partially in RKS1-mediated resistance. However, these func-
tional modules exhibit differential robustness to genetic mutations,
indicating that, within the decentralized structure of the QDR net-
work, some modules are more resilient than others. In conclusion,
our work sheds light on the complexity of QDR and provides com-
prehensive understanding of a QDR immune network.
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In nature, plants are continuously exposed to various patho-
genic microbes and have evolved multiple layers of immune

responses in order to protect themselves. A large body of data
has been produced to unravel the molecular mechanisms under-
lying qualitative resistance that is determined by a few genes
conferring an almost complete resistance such as nucleotide-
binding domain leucine-rich repeat (NLR) receptors. In contrast,
quantitative disease resistance (QDR) remains poorly understood
(1–4) despite the fact that it represents the predominant form of
resistance in natural populations and crops (5). The complexity of
the genetic architecture underlying natural variation of QDR,
which involves many QTLs with minor to moderate effects, has
limited the analysis of the underlying molecular mechanisms.
However, several genes with various functions have been cloned in
recent years (6). For example, an ABC (adenosine triphosphate
[ATP]-binding cassette) transporter encoded by the gene Lr34 was
identified and confers resistance against multiple fungi in wheat
(7). A caffeoyl-CoA O-methyltransferase associated with lignin
production is shown to confer QDR to diverse maize necrotrophic
diseases (8). Interestingly, kinases have been shown in several
cases to play key roles in QDR. One of the best studied cases is the

maize wall-associated kinase, ZmWAK1, conferring QDR to
northern corn leaf blight, and for which the molecular function
has been associated with the biosynthesis of secondary metabolites
(9, 10). In some cases, NLR genes can also confer QDR (1, 11).
Thus, the molecular functions underlying QDR seem to be more
diverse than those responsible for qualitative resistance. However,
for these few identified genes, the identity of the downstream
components of QDR and the corresponding gene networks re-
main largely unknown.
QDR is determined by multiple QTLs of minor to major ef-

fects and can be hypothetically defined as a complex network
integrating diverse pathways in response to multiple pathogenic
determinants (2). As other responses to pathogen attack, QDR
may require the coordinated and early expression of plant defense
mechanisms including several defense-associated metabolites,
proteins, or genes potentially involved in other plant immunity
pathways. While many transcriptomic approaches were used to
characterize other forms of immunity (12), to date, comparative
transcriptome analyses of plant–pathogen interactions showing
QDR remain scarce. In some cases, differential gene expression
was studied in near-isogenic lines (NILs), or susceptible versus
tolerant lines (13, 14). Transcriptomic analysis of NILs differing
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for ZmWAK-RLK1 (10) showed a close association of WAK-
mediated QDR with changes in expression of genes involved in
the biosynthesis of benzoxazinoids, thereby revealing a new role
for this metabolism in immunity to fungal pathogens. This dem-
onstrates that transcriptome approaches on focused QDR genes
can help to understand some components of the complex responses
associated with this form of resistance. However, one major limi-
tation is that an individual analysis of an identified pathway might
lead to the possible underestimation of multiple and coordinated
pathways acting together to mount the QDR response.
In this context, genome-wide modular network analysis has

been recently used to decipher such biological complexity and first
applied to the plant immune responses ETI (effector-triggered
immunity) and PTI (PAMP-triggered immunity) (12, 15–17).
Comparison at different scales indicated a densely connected
network shared between ETI and PTI (12). Important interactions
between these two immune responses were identified, one sig-
naling subnetwork mediating the hypersensitive response being
inhibited by PTI signaling (18). QDR, considered as the result of an
interplay between multiple pathogen effectors, toxins, or other
metabolites and diverse plant targets and defense responses, pre-
sents a high complexity and therefore prompted us to use systems
biology approaches (19). Indeed, these approaches allow the study
of network properties referred to as “emergent property” of com-
plex biological networks by combining molecular network modeling
and experimental investigation. Among them, robustness is a key
property “that allows a system to maintain its functions against in-
ternal and external perturbations” and involved in immune systems
and biological network evolution (20). In addition, QDR genes
confer broad-spectrum resistance and have been associated with
durable resistance in many cases (4). Consequently, the QDR plant
immune system should have evolved to acquire a particularly high
robustness and tunability. These properties were proposed for PTI
to occur through cell surface receptor complexes (21) and multiple
paths of signaling networks (17). The extent to which these
properties are associated with the QDR immune network, to-
gether with the identification of the network components, remain
open questions.
The bacterial vascular pathogen Xanthomonas campestris (Xc)

causes the black rot disease, possibly the most important disease
of crucifers, and is one of the most prevalent bacterial pathogens
in natural populations of A. thaliana (22–24). We identified by
map-based cloning and nested genome-wide association map-
ping the Arabidopsis gene RKS1, which confers quantitative and
broad-spectrum resistance to Xc (25). RKS1 encodes an atypical
kinase, for which no kinase activity has been detected so far.
Interestingly, atypical kinases (or pseudokinases) are known to
be regulators of signaling networks (26), acting as molecular
scaffolds for assembly of protein complexes or modulation of the
activity of a catalytically active enzyme (27). RKS1 constitutes a
starting point for exploration of the signaling pathways leading to
QDR to Xcc in Arabidopsis thaliana. Recently, RKS1 has also
been shown to be a component of an NLR resistosome (28, 29).
These results suggest that RKS1 might be part of a signaling
platform in response to recognition of various pathogen deter-
minants and a key element to coordinate gene expression of the
plant immune system. Here we show, by a combination of omics,
network reconstruction, and mutational approaches, that the
RKS1-dependent gene network reveals unexpected and multiple
regulatory modules controlling QDR to Xc in A. thaliana, and
exhibiting differential robustness.

Results
Transcriptome Analysis Reveals that RKS1 Controls Multiple Cellular
Activities. To investigate QDR regulatory pathways and potential
cell reprogramming specifically controlled by RKS1, a tran-
scriptomic analysis was performed using RKS1 deregulated lines
expressing contrasted phenotypes (Fig. 1). The rks1-1 mutant

and amiRNA lines for RKS1 (RKS1-si/Col-0) were previously
characterized and showed a susceptible phenotype (25). Trans-
genic lines overexpressing RKS1 were generated (RKS1-OE/Col-
0; SI Appendix, Fig. S1), and all presented increased resistance
to Xcc568, the Xc strain used for the identification of RKS1
(Fig. 1 A–C and SI Appendix, Fig. S2A). This phenotype was as-
sociated with an absence of leaf bacterial invasion as shown by
using an Xcc568 strain harboring the Photorhabdus luminescens lux
operon (30) and by in planta bacterial growth (Fig. 1B and SI
Appendix, Fig. S2B).
For transcriptome analysis, we harvested leaves after inoculation

with the bacterial strain Xcc568 and focused on early responses
(0, 1.5, 3, and 6 h postinoculation [hpi]). Three independent
experiments were performed, and RNA was sequenced with an
average of 20.6 million reads per sample. The major driver of
differential gene expression was the time (hpi/time 0, accounting
for 78.3% of the total variance; SI Appendix, Fig. S3). The line/
time effect accounted for 13.7% of total variance and revealed
that significant differences among lines were mainly observed at
6 hpi (SI Appendix, Table S1), i.e., these effects greatly exceeded
the effects from biological replicates. A total of 6,733 differen-
tially expressed genes (DEGs) between inoculated lines and
mock Col-0 samples were identified, corresponding to genes with
significant line or hpi effect. We then selected the genes signif-
icantly deregulated at least for one time point in one transgenic
line as compared to the wild type. Most of these 3,412 genes
were found to be deregulated 6 hpi, among which 1,645 were up-
regulated and 1,954 down-regulated as compared to the wild
type (SI Appendix, Fig. S4). To identify DEGs specifically asso-
ciated with RKS1, we focused on genes found at 6 hpi to be up-
or down-regulated in the RKS1-OE line and in the opposite way
in the RKS1-si24 line and the rks1-1 mutant. We identified a
total of 268 DEGs (Dataset S1), which belong to four classes of
gene regulation: up-regulated in the RKS1-OE1 (up) line and
down-regulated in the rks1-1 mutant and RKS1-si24 lines
(down-down), DEGs with the opposite profile (down-up-up),
DEGs affected similarly in the rks1-1 mutant and RKS1-si24 line
(down-down or up-up), and DEGs not affected in the RKS1-OE1
line (Figs. 1D and 2A and Dataset S1). To confirm patterns of
gene expression after Xcc inoculation, we analyzed the expres-
sion profile of ∼10% of the DEGs randomly selected from each
regulation class by RT-qPCR, using the RKS1 deregulated lines
used for the transcriptomic analysis. Under these conditions, we
found that about 80% of the genes showed an expression profile
similar to the one obtained by RNA-seq data (SI Appendix, Fig.
S5A), and a highly significant correlation was found between the
RNA-seq and RT-qPCR data (Pearson’s rho = 0.86; SI Appen-
dix, Fig. S5B). By using two additional lines (RKS1-OE2 and
RKS1-si15) and another independent experiment, 56% of the
genes were still validated (SI Appendix, Fig. S5A). The expression
pattern of selected genes for each regulation class (Fig. 1E) indi-
cates that the differential expression pattern of RNA-seq datasets,
qPCR datasets using initial transcriptome samples, and indepen-
dent experiments were consistent.
To document the nature of the transcriptional changes de-

pendent on RKS1, a Gene Ontology (GO) enrichment analysis
was performed on the 268 DEGs (Fig. 2B and SI Appendix, Fig.
S6). This analysis revealed an enrichment in three main cellular
activities, including cellular responses, transport, and metabolism.
Functions related to transport and metabolism were strongly
enriched in the class of genes whose expression was down-
regulated in rks1-1 and RKS1-si24 lines. These results show that
RKS1-dependent gene expression involves different cellular activi-
ties in the early stages of infection, in line with the complex nature
of the QDR response. We then examined whether the identified
DEGs include genes already associated with other forms of
immunity (SI Appendix, Fig. S7). Interestingly, very few genes
were found in common with previously identified ETI- and/or
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Fig. 1. Global gene expression analyses in RKS1-deregulated transgenic lines after X. campestris pv. campestris inoculation led to the identification of 268
differentially expressed genes. (A) Visual observations of the disease symptoms 10 d after inoculation with a bacterial suspension adjusted to 109 cfu/mL. (B)
Luminescence imaging illustrates quantitative and spatial aspects of leaf colonization by Xcc568. Photos were taken with a CCD camera under light (exposure
time 10 ms) and dark conditions (exposure time 10 s) 7 d postinoculation with the Xcc568-Lux reporter strain. From these pictures, an overlay image was
generated. (C) Time course evaluation of disease index after inoculation with Xcc568 with a bacterial suspension adjusted to 109 cfu/mL. Means and SEs were
calculated from 18 plants in 3 independent experiments. (D) Venn diagrams showing the distribution of genes up- or down-regulated in the different RKS1
transgenic or mutant lines, as compared to the wild type accession Col-0. (E) Quantitative RT-PCR validation of the expression profile for four specific genes,
each belonging to an expression class: WRKY64 as an example of the class UDD (up-regulated in RKS1-OE1 line, down-regulated in RKS1-si24 and in rks1-1
lines), RGLG2 as ØDD class (not affected in RKS1-OE1 line, down-regulated in RKS1-si24 and in rks1-1 lines), ACL as DUU class (down-regulated in RKS1-OE1
line, up-regulated in RKS1-si24 and in rks1-1 lines), and CYSD2 as ØUU class (not affected in RKS1-OE1 line, up-regulated in RKS1-si24 and in rks1-1 lines). From
left to right and for each class: expression pattern on RNA-seq datasets, qPCR datasets using initial transcriptome samples, and independent experiment.
Statistical analyses for qPCR were performed with the Wilcoxon test.
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PTI-associated genes in A. thaliana during the early stages of
pathogen infection (12, 18, 31): 42 genes related to ETI (15.6%
of QDR DEGs, 1.8% of ETI genes) and 35 genes related to
PTI (13.1% of QDR DEGs, 1.6% of PTI genes). Therefore, we
conclude that RKS1 controls multiple QDR pathways that are
mainly distinct from ETI and PTI responses in A. thaliana.

Protein–Protein Interaction Network Reconstitution Revealed a
Highly Connected and Distributed RKS1-Dependent Network. Tran-
scriptomic analysis revealed that RKS1-dependent gene expres-
sion in the early stages of infection involves different cellular
activities, and many of them, such as signaling pathways, protein

metabolism, and trafficking, are known to involve protein–protein
interaction networks. Hence, to decipher the signaling pathways
downstream of RKS1 and the putative protein–protein interaction
(PPI) network controlled by RKS1, we investigated the functional
protein association network depending on RKS1 using three
strategies. First, we assessed the subcellular localization of RKS1
to reveal where potential interactions take place. Second, we ex-
perimentally searched for proteins interacting with RKS1 by using
the yeast two-hybrid (Y2H) system. Third, we reconstructed a
model of PPI network by looking for known interactors of the
proteins encoded by the 268 DEGs and of the RKS1 putative
interactors identified in this study.

A B

Fig. 2. Clustering and Gene Ontology analyses of the 268 differentially expressed genes (DEGs) reveal multiple gene functional modules. (A) Clustering of
the 268 DEGs whose expression is shared by the different RKS1 deregulated lines (P values < 0.05 corrected by BH statistical analysis). Each line was compared
with Col-0 at 0, 3, and 6 hpi. Green indicates down-regulated values, red indicates up-regulated values, black indicates unchanged values, and white indicates
missing values. (B) Gene Ontology (GO) enrichment analysis of the 268 DEGs was plotted by using BINGO module from Cytoscape software. GO process
annotation was recovered for 232 of 268 DEGs. Enrichment was calculated using BINGO and plotted on GO hierarchy using Cytoscape. Circle size represents
gene number in one GO, and the colors represent GO enrichment (GO white is not enriched, and color increased with P value < 0.05).
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Using confocal laser-scanning microscopy, we observed leaves
of overexpressing lines containing an RKS1–yellow fluorescent
protein (YFP) fusion construct (Fig. 3B). The YFP signal was
observed in the plasma membrane, in cytoplasmic tracks, and in
the nucleus. The same observation was done after transient ex-
pression of a RKS1-GFP fusion construct in A. thaliana seedlings
and confirmed by coexpression with different subcellular mark-
ers (SI Appendix, Fig. S8). Although we cannot rule out a pos-
sible side effect of the fluorescent tag, these results indicate that
the RKS1 protein localization was observed in multiple com-
partments including the plasma membrane, the cytoplasm, and
the nucleus. Moreover, a mutated version of RKS1 (RKS1D191A)
was used as bait to screen a Y2H Arabidopsis cDNA library
generated from mRNAs isolated from leaf tissue after bacterial
inoculation (32). Forty-one prey cDNA clones were identified in
two independent screening rounds (SI Appendix, Table S2). In
parallel, we collected information based on Biological General
Repository for Interaction Datasets (BioGRID) data, a database
collecting experimental evidences for protein–protein interac-
tions, in order to identify primary interactors of the 268 DEGs
and the 41 putative interacting proteins. Each of the 2,294 in-
teractions found were manually curated with data available in
UniProt Knowledgebase (https://www.uniprot.org/) and using
the published articles related to the proteins of interest (Dataset
S2). The final PPI network is composed of 1,330 nodes (proteins)
corresponding to 1,047 genes involved in 1,876 interactions and
integrates 49% of the DEGs. A total of 906 proteins (87% of the
proteins) are linked to RKS1 via protein–protein interactions
(Fig. 3A). Such features indicate that RKS1 might be involved in
an intricated protein–protein interaction network, a part of this
network corresponding to genes whose expression is RKS1-
dependent.
Analysis of the protein localization reported for the network

components revealed that the three most abundant localization
sites are in the plasma membrane (198 components; 14.8%), the
cytoplasm (259; 19.3%), and the nucleus (273; 20.4%; Fig. 3C).
Taking in account that RKS1 has been observed in these com-
partments, this proportion indicates that the PPI network con-
tains components able to establish interactions and which might
participate in signaling from the plasma membrane to the nu-
cleus. Thus, this network structure corroborates the role of
RKS1 in triggering rapid gene expression reprogramming at an
early stage of infection. Interestingly, expression classes were
found distributed within the network, indicating that the RKS1-
dependent network presents a decentralized structure (Fig. 4A).
In addition, the network was distributed in five main modules of
different biological functions, i.e., signaling and regulation of
cellular process, vesicle-mediated and small molecule transport,
and protein and small molecule metabolism (Fig. 4B). Proteins
assigned to the different biological functions are highly inter-
connected and distributed in the RKS1-dependent network. In-
deed, analysis of the network connectivity reveals that 33% (346
of 1,047) of the proteins are connected with at least two partners
and 7% (n = 73) are connected with five or more partners (SI
Appendix, Fig. S9). Proteins related to signaling and regulatory
functions are the more connected proteins, with 40% of the
proteins connected. RKS1 appears as one of the main hubs, with
44 interacting partners. In summary, we established the RKS1-
dependent network and its highly connected nature and decen-
tralized topology is in agreement with the hypothesis about the
complex and multigenic nature of quantitative disease resistance.

Differential Robustness of Subnetworks of the QDR Response Revealed
by Mutant Analysis. In order to validate the complex and multigenic
nature of the RKS1-dependent QDR, we hypothesized that, if
the five functional gene classes identified in the reconstructed
PPI network play key roles in resistance to Xc, we should expect
that mutants affecting genes belonging to these modules present

alteration of their phenotype in response to Xcc568. Seventy-one
T-DNA mutants in the Col-0 background were collected, first
characterized by evaluating gene expression and sequencing the
T-DNA insertion site, and phenotyped after inoculation with
Xcc568 (SI Appendix, Fig. S10). The disease scores were plotted on
the corresponding genes within the reconstructed RKS1-dependent
network (Fig. 5A). From the mutants tested, 49 T-DNA mutants
were significantly affected for their response to Xcc: 35 were found
more susceptible, 14 more resistant (SI Appendix, Fig. S10). The
mutant disease scores were quantitatively distributed between those
of Col-0 and rks1-1, suggesting that each gene/gene module par-
ticipates partially to RKS1 mediated resistance. Interestingly, these
mutations do not similarly affect the different functional modules of
the network, with the metabolism module being particularly af-
fected (Fig. 5B). Indeed, we calculated each module’s robustness
and found that the protein metabolism module including genes
related to ubiquitination/proteasome was strongly impacted (100%
of the genes mutated lead to resistance alteration). However, the
resistance robustness to mutational perturbation remains at 0.43,
i.e., only 57% of the mutants display a resistance decrease. The
small molecule metabolism also presented a significant perturba-
tion: 75% of the genes mutated led to resistance alteration, and, for
almost all of them, to a reduction of resistance (robustness 0.25). In
the opposite, the vesicle-mediated transport module is the less im-
pacted sector of the network (62% of the genes affected and ro-
bustness of 0.38). The signaling and regulation of cellular process
sector for which a particularly high number of genes was tested
because of the putative signaling function of RKS1 showed a dis-
tinct pattern of response to mutation. Out of 20 genes tested using
34 mutants, 16 (80%) were found to exert a role in resistance, as the
corresponding mutants were significantly affected as compared to
the wild type. Interestingly, for half of these genes, the corre-
sponding mutants were exhibiting an increased level of resistance,
suggesting their implication in the negative regulation of resis-
tance to Xcc. This module displays the highest level of robustness
for resistance (0.50). Thus, the functional subnetworks of the QDR
response to Xcc show differential robustness, indicating that, within
the decentralized structure of the QDR network, some modules are
more resilient than others, suggesting that the genes implicated in
these different modules can compensate for each other.
A subnetwork including RKS1 and composed of 27 proteins

(29 nodes) is presented in Fig. 5C. Interestingly, this subnetwork
comprises essential signaling and regulatory proteins, located in
the plasma membrane, nucleus, and cytoplasm (Fig. 5D) and in-
cluding seven receptor-like kinases and a kinase (in close connec-
tion with RKS1), seven transcriptional factors, and two proteins
related to metabolism (TAT3 and CAT2). Twelve insertional mu-
tants corresponding to nine of these genes were analyzed, demon-
strating that seven of them have an impact on resistance to Xcc
(Fig. 5E). These findings suggest an essential role of this subnetwork
in RKS1-dependent QDR and open avenues for functional studies.

Discussion
In recent years, considerable progress has been made in under-
standing the organization and dynamics of the plant immune
system by using system-level approaches allowing integration of
high-throughput genomic data. For instance, ETI and PTI are
organized in diverse and interconnected defense modules, in-
cluding receptor subnetworks, explaining the relative robustness
of the plant immune system to pathogen perturbations (12, 17,
21). Communication between these immune networks and some
pathogen molecules (effectors) is now being explored, revealing
contact points (33, 34). However, while ETI and PTI are con-
trolled by large effect genes that are mainly involved in pathogen
perception and signaling, quantitative disease resistance is medi-
ated by multiple functions, extending beyond pathogen perception
(3). Despite its preeminence in natural plant populations and
crops, the comprehension of its mechanistics has been hampered
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Fig. 3. Protein–protein interaction network reconstitution reveals a highly interconnected and distributed RKS1-dependent network. (A) The RKS1
protein–protein interaction network plotted with Cytoscape showing the components used for its construction: RKS1 (in red), the physical interactors of RKS1
identified by yeast two-hybrid screening (in orange), the proteins corresponding to the 268 DEGs (in blue), and the proteins identified in the bibliography as
experimentally interacting with the proteins corresponding to the 268 DEGs (in gray). (B) Confocal scanning microscopy observation of Arabidopsis leaves of
RKS1-OE lines. RKS1 localizes to multiple subcellular compartments: the nucleus, plasma membrane, and cytoplasmic tracks. (C) Display of the subcellular
localization of the network components in the compartments where RKS1 has been observed: plasma membrane, cytoplasm, and nucleus.
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by its biological complexity (4). While many QDR genes have been
recently identified, complete description and functional analysis of
the gene networks underlying this immune response are still lacking.
Using transcriptome and protein interactome analyses, systems

biology, and functional validation by mutational approaches, we
provide clues on the molecular networks acting downstream and
possibly upstream of the RKS1 gene that regulates QDR in re-
sponse to Xcc.

A

B

Fig. 4. Expression profiles and functions of components of the RKS1 protein–protein interaction network. (A) The RKS1 protein–protein interaction network
plotted with Cytoscape showing the components for which the gene expression pattern has been evaluated: in red, XDD DEGs (classes UDD and ØDD); in
green, XUU DEGs (classes DUU and ØUU). (B) Display on the RKS1 protein–protein interaction network of the functional annotation of the different proteins.
In green are proteins assigned to the functional group indicated.
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Fig. 5. Evaluation of robustness of the RKS1-dependent network by phenotypic characterization of mutants corresponding to some network components.
(A) The RKS1 protein–protein interaction network plotted with Cytoscape showing the components for which mutants have been phenotyped in response to
Xcc. Each circle represents the mutant phenotype corresponding to the protein component of the network: red indicates mutants significantly more sus-
ceptible than the wild type accession, green more resistant, and white not affected. No mutant was tested for genes represented in gray. (B) Disease index at
7 dpi after inoculation with a bacterial suspension adjusted to 2.108 cfu/mL of mutants corresponding to genes belonging to the different functional groups.
Mutants belonging to “Signaling and regulation of cellular process” (blue), “Vesicle-mediated transport” (green), “Protein metabolism (ubiquitination/
proteasome)” (orange), and “Small molecule metabolism” (yellow) are identified by numbers (SI Appendix, Table S3 shows correspondence to gene accession
numbers). Mutants corresponding to the same gene have been grouped. Means were calculated from 4 to 24 plants (*Kinetic modeling deference with Col-
0 time course, 0 = P value > 0.05 and 1 = P value ≤ 0.05). (C–E) A signaling subnetwork was extracted from the RKS1 protein–protein interaction network. (C)
Subnetwork with protein functional groups (blue, signaling and regulation; yellow, small molecule metabolism; green, small molecule transport; dark green,
vesicle-mediated transport; grey, others) and the protein molecular functions. Large circles indicate proteins encoded by genes from the 268 DEGs, and little
circles indicate proteins from Y2H or BioGRID candidates. (D) Subnetwork with the protein subcellular localization (dark blue, plasma membrane; pale blue,
cytoplasm; pink, nucleus; grey, others). (E) Subnetwork with the insertional mutant phenotypes (red, mutants more susceptible than the wild-type; green,
mutants more resistant than the wild-type; white, mutants as the wild-type; grey, not determined).
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Previous studies of QDR by RNA-seq approaches indicated
multifaceted defense responses according to the resistant geno-
type studied and the different QTLs involved (35, 36). However,
a major limitation associated with these studies is the genetic
diversity of the plant lines used. Here, we used RKS1 deregulated
lines in order to precisely unravel the molecular mechanism
underlying this resistance QTL. Among the 268 DEGs identified
6 hpi, 23% are associated with signaling and regulation of cel-
lular processes, including 15 kinases or kinase-like proteins; 16%
are related to vesicular and small molecule transport; and finally,
41% are involved in metabolic processes. This demonstrates that
1) genes associated with the early steps of QDR belong to di-
verse functional classes, in line with the idea that QDR does not
involve simply perception of pathogenic molecules (3); 2) the
major functional class is related to metabolic processes; and 3)
these genes are mostly distinct from PTI and ETI gene networks
already described (12, 18, 31) (SI Appendix, Fig. S7). A similar
observation was reported by comparative transcriptomic analyses
on barley in response to stem rust, indicating that 25% of barley
genes are altered in response to infection, but only very few of
these genes are controlled by the R locus (37). In line with these
observations, we found a small proportion (6%) of genes puta-
tively associated with response to hormones, none of them re-
lated to defense phytohormones such as ethylene (ET),
jasmonate (JA), or salicylic acid (SA) (31, 38). However, previ-
ous studies have indicated that a four-sector network including
ET, JA, SA, and PAD4 (PhytoAlexin Deficient 4) was required
for PTI and ETI (18, 38, 39). Therefore, we tested single, double,
triple, and quadruple mutants of ein2-1, pad4-1, sid2-2, and dde2-
2. Most of these mutants were either more resistant or not af-
fected in response to Xcc (SI Appendix, Fig. S11), indicating that
1) the QDR gene modules are mainly distinct from PTI and ETI
networks found in response to Pseudomonas syringae, in good
agreement with our findings by transcriptomic data comparison
(SI Appendix, Fig. S7), and 2) a negative regulatory impact of the
four hormonal sector network controlling ETI and PTI was ob-
served on resistance to Xcc, revealing a balance between the
different forms of immune responses. This finding is in agree-
ment with the ETI-mediating and PTI-inhibited sector (EMPIS)
mechanism identified, which tunes the immune response in re-
sponse to P. syringae, and specifically the ETI and HR responses
when the PTI is effective (18). Taking in account that ZAR1
forms a complex with RKS1 to perceive the effector XopAC
from Xcc (30), these findings also suggest that the immune re-
sponse triggered by this perception event is probably part of (or
corresponds to) the immune response studied here and/or in-
cludes components mainly distinct from those already identified
for ETI, as previously suggested (40). Therefore, to explore this
hypothesis, we used three complementary strategies: 1) we
studied the resistance phenotypes of the different RKS1 lines in
response to Xcc568 and Xcc568ΔXop-AC, 2) we analyzed the
expression of a subset of genes from our RKS1-dependent gene
network in these lines in response to the same bacterial strains
and in the zar1-2 mutant as compared to the wild type and rks1-
1 mutant, and 3) we analyzed the resistance phenotypes of two
mutants corresponding to genes of the RKS1-dependent net-
work in response to the same bacterial strains. As previously
shown with the Xanthomonas strain 8004 (28), the two mutants
rks1-1 and zar1-2 were susceptible to Xcc568 and Xcc568ΔXo-
pAC to a similar extent (SI Appendix, Fig. S12A). In contrast, the
RKS1-OE1 line, which was more resistant than Col-0 to Xcc568
(129% at 7 dpi), was also more resistant to Xcc568ΔXopAC (41%
at 7 dpi). These results demonstrate that the resistance phenotype
observed in RKS1-OE1 is partially XopAC-independent. This ob-
servation was reinforced by testing the expression profile of a subset
of genes (30 tested) from the RKS1-dependent gene network.
Several genes showed an expression independent of the presence of
XopAC in the RKS1-OE1 line (SI Appendix, Fig. S12B). Similarly,

several genes showed a differential expression in the mutants zar1-2
and rks1-1 as compared to the wild type (SI Appendix, Fig. S12C). A
similar behavior was observed for the resistance phenotype of two
mutants corresponding to genes of the RKS1-dependent network
(SI Appendix, Fig. S13). All these experiments taken together sug-
gest that RKS1-dependent resistance is only partially dependent on
XopAC and/or ZAR1, suggesting that QDR probably results from
integration of different perception and signaling pathways, each of
them representing a part of the resistance phenotype. This sug-
gests also that ZAR1-dependent ETI differs from already char-
acterized ETI pathways (40).
The most intriguing question about how QDR response is

mounted at early time points of the interaction is whether mul-
tiple recognition and/or signaling/regulatory pathways are acti-
vated in parallel and then interconnected to produce a coherent
response to the pathogen attack. In this context, we identified
five different subnetworks that are different players in mediating
QDR. Targeted protein localization and transport are essential
for every stage of plant response to environmental constraints,
especially during interactions with pathogenic microbes (4), and
commonly associated with QDR (41, 42). Thus, VAMPs, syntax-
ins, and ABC transporters have been found among the DEGs, but
most of them have not been described as associated with plant
immunity yet. In the same line, proteasome proteolytic pathway
and ubiquitination play major roles in plant immunity (43, 44).
With the exception of RIN2 (RPM1 interacting protein 2) (45), 19
genes encoding ubiquitin-ligases or proteasome subunits have
been identified in our study, most of them not previously de-
scribed as involved in plant immunity. An important part of 268
DEGs (28%) was identified as part of small molecule metabolism
with various functions, including carbon and secondary metabo-
lism, confirming the large panel of functions usually described in
QDR. Interestingly, we identified not less than 8 kinases and 10
receptor kinases in the signaling gene module. Considering that
RKS1 encodes an atypical kinase, possibly a pseudokinase, kinases
or receptor kinases constitute good candidates as potential cor-
egulators. In agreement with previously described functions for
pseudokinases (27, 46), RKS1 might act as a scaffolding protein
to modulate their activity by activation or change in substrate
specificity. The subnetwork extracted from the RKS1 network
(Fig. 5C) supports such a hypothesis, as RKS1 interacts directly or
indirectly with diverse RLKs. Moreover, 5 phosphatases and 16
transcription factors were also found within the DEGs, most of
them not previously described in the context of plant immunity. In
line with this central role of RKS1 in immune signaling pathways,
RKS1 appears as a hub (44 connections) at the center of a dense
network of components from plasma membrane to the cytoplasm
and nucleus. Further studies, including transcriptomic studies at
later timepoints, would help to get a dynamic comprehension of
the RKS1 network and of its placement in relation with other
forms of immunity.
Robustness is a key property of biological networks, especially

of immune systems (20), and potentiates the evolvability of biolog-
ical systems, which is a cornerstone in plant–pathogen interactions.
We investigated the robustness of the RKS1-dependent network to
mutational perturbations. Such loss-of-function perturbations may
mimic gene function disruption triggered by pathogen effectors.
Most mutants (69%, representing 76% of genes) showed phenotypic
alteration but with only a moderate effect on resistance. This ob-
servation suggests a decentralized network because none of the gene
disruption exerts a drastic and complete loss of resistance. However,
most of the genes have a quantitatively significant effect, indicating
their active role and the absence or low level of redundant/com-
pensatory pathways replacing their loss of function. Interestingly, the
potentially upstream functions, related to signaling and regulation,
display the highest level of robustness (0.50), whereas the putatively
more downstream processes, like small molecule metabolism, dis-
play low robustness (0.25). It should be noted that, for more than
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half of the genes related to signaling and regulation, mutations do
not lead to a loss of resistance. This is mainly because a large part of
these genes might be involved in mitigating resistance rather than in
mounting resistance, with mutations in these genes leading to in-
creased resistance. Hence our analysis shed light on the network
structure of QDR and provides explanation of its high robustness to
pathogen breakdown (4). Indeed, QDR depends on the contribu-
tion of many components involved in various and multiple defense
mechanisms, with low functional redundancy. In contrast, in the case
of qualitative resistance, robustness is due to functional redundancy
of NLRs or decoy resistance proteins as well as compensatory
downstream pathways (21, 31, 47, 48). In an attempt to compare the
different forms of immune systems and the observed phenotypes
(quantitative and qualitative resistance), qualitative phenotypes are
expected to depend on upstream network components through
which pathogen recognition is almost essential for triggering sig-
naling and defense mechanisms. In such case, functional redundancy
may be the major source of robustness (21). Also, our analysis did
not reveal a high level of compensatory downstream pathways in the
case of QDR even if more deep analysis of the pathways would be
required to identify such complex mechanisms. This feature may
also differentiate QDR from the qualitative resistance. Quantita-
tive phenotypes are expected to depend on early, intermediary,
and downstream components, the contribution to the information
flow toward mounting resistance being distributed through the
whole network. In such case, decentralized distribution of infor-
mation seems the major source of robustness.
Analysis of multiple and combined disruptions of apparently

unrelated genes (different functional categories) will further help to
decipher the defense regulators and their distributed contributions
to QDR. This should reveal if defense mechanisms operate in an
additive or synergistic manner.

Material and Methods
Full and detailed methods are described in SI Appendix,Material andMethods.

Plant Growth and Bacterial Inoculation. A. thaliana Col-0 accession was grown
on Jiffy pots in a growth chamber at 22 °C with a 9-h photoperiod at
192 μmol m−2 s−1. Four-week-old plants were used for experiments. The

inoculation tests were done with the strain LMG568/ATCC33913 (Xcc568)
(49) carrying the LUX operon of Photorhabdus luminescens (50).

FluorescenceMicroscopy. Fluorescence images were acquired using a Leica SP8
confocal microscope equipped with a water immersion objective lens (×25,
numerical aperture 1.20; PL APO).

Yeast Two-Hybrid. To identify proteins interacting with RKS1, a mutated
version of RKS1 (RKS1D191A) was used to screen a cDNA library made from A.
thaliana leaves infected with the strain Xcc147 (32).

Transcriptomic Analyses. Arabidopsis plants mis-expressing RKS1 [At3g57710;
rks1-1, RKS1-si24 (25) and RKS1-OE1 lines] were used. Three independent
experiments were performed at four time points (0, 1.5, 3, and 6 h postin-
oculation). Samples were sequenced by Fasteris on an Illumina HiSEq 2500
instrument. Reads were mapped on Col-0 genome downloaded from TAIR
(https://www.arabidopsis.org/) using the glint software (http://lipm-bioinfo.
toulouse.inrae.fr/download/glint/; release glint-1.0.rc6). Raw and normalized
RNA-seq data have been deposited in the SRA database (accession number
SRP233656).

Network Reconstruction. Interactors of the 268 coregulated genes and the 41
potential interactors of RKS1D191A identified by yeast two-hybrid screens
were recovered from Arabidopsis BioGRID protein interaction datasets ver-
sion 3.5.179 (51). Protein–protein interactions were plotted with Cytoscape
software v3.7.2. GO annotation analysis was done using BINGO module from
Cytoscape. Network connectivity was calculated using Cytoscape.

Data Availability. All data necessary for replication are included in the sub-
mission and/or publicly available. The readers will be able to access the data,
associated protocols, code, andmaterials in the paper, including the raw data
of RNA sequencing experiments, which have been deposited in the SRA da-
tabase at https://www.ncbi.nlm.nih.gov/sra (accession number SRP233656).
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